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Abstract 

Multiresolution methods provide a means for representing data at 
multiple levels of detail. They are typically based on a hierarchical 
data organization scheme and update rules needed for data value 
computation. We use a data organization that is based on what we 
call fi subdivision. The main advantage of subdivision, com- 
pared to quadtree (n = 2) or octree (n = 3) organizations, is that the 
number of vertices is only doubled in each subdivision step instead 
of multiplied by a factor of four or eight, respectively. To update 
data values we use n-variate B-spline wavelets, which yields bet- 
ter approximations for each level of detail. We develop a lifting 
scheme for n = 2 and n = 3 based on the fi-subdivision scheme. 
We obtain narrow masks that could also provide a basis for view- 
dependent visualization and adaptive refinement. 

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge- 
ometry and Object Modeling Project-; J [Computer Applications]: 
Physical Sciences and Engineering-Life and Medical Science 

Keywards: hierarchical volume modeling, subdivision, B-spline 
wavelets, lifting, multiresolution modeling, data approximation 

1 Introduction 

Multiresolution schemes are used in computer graphics mainly 
for editing and rendering curves and surfaces at multiple levels of 
resolution. While most existing schemes could, in principle, be 
generalized for higher dimensions, only a few have been extended 
to data (or functions) defined over higher-dimensional domains. 
The combined subdivision-wavelet scheme we are describing in 
this paper is driven by the need to represent trivariate data (or 
functions) at multiple resolution levels. 

to apply rendering operations to the volumetric data - examples 
being volume slicing via a cutting plane, isosurface extraction 
through marching-cubes-like algorithms, and ray casting. The 
multiresolution approximation approach we develop in this paper 
provides an elegant means of hierarchically organizing volume 
data, and we can use the resulting hierarchy to apply to its various 
levels volume data visualization methods. 

We combine subdivision with n-variate B-spline wavelets 
for n-dimensional multiresolution data representation. One- and 
two-dimensional multiresolution schemes have been studied exten- 
sively over the past decade. A survey of the main multiresolution 
approaches, considering also topological constraints, is given by 
Kobbelt in [Kobbelt 20021. These approaches can, for example, be 
used for a multiresolution representation of isosurfaces. However, 
when considering @io-)medical imaging data, we must be able 
to switch quickly between isosurfaces corresponding to different 
isovalues, and when considering, for example, numerically simu- 
lated time-dependent hydrodynamics data, we even have to deal 
with isosurfaces changing over time. It is practically impossible to 
store every single isosurface for all possibly important isovalues at 
different resolutions and reload them during visualization. Instead, 
we establish a multiresolution volume data representation. We first 
develop a bivariate B-spline wavelet scheme for subdivision 
and then generalize it to a trivariate B-spline wavelet scheme for 
f i  subdivision. We apply our techniques to bivariate as well as 
volumetric data. 

For three-dimensional multiresolution representation, one may 
use an octree structure, see, for example, [Pinskiy et al. 20011, but 
each octree refinement step doubles the number of vertices in every 
dimension. This leads to a factor of eight for every refinement step. 
In the following section, we introduce the $%subdivision scheme. 
Every @-subdivision step only doubles the number of vertices, 
which theoretically is a factor of ;/z in each of the dimensions. Representing volume data hierarchically is especially important 

in the context of “volume modeling” and visualizing volume 
When using a wavelet scheme, the data value at a vertex p is up- 

dated when changing the level of detail, and thus the value varies in 
the different levels of detail. On a coarse level, the value represents 
the value at p itself as well as an average value of a certain region 
around p. This leads to better approximations on coarser levels. 

data, e.g., scalar or vector fields defined over volumetric domains. 
Visualizing inherently trivariate phenomena often requires one 

*llinsen@ucdavis.edu, (grayj,hamann,joy)@cs.ucdavis.edu 
t {pascucci 1 ,duchaineaul} @llnl.gov * httn:l/eraohics.cs.ucdavis.edu r V I  

Wavelets based on the @-subdivision scheme unfortunately have 
the disadvantage of creating over- and undershoots. For example, 
for isosurface extraction (n = 3) this characteristic can cause the 
side effect of creating isosurfaces (or isosurface components) that 
vanish when increasing the resolution. Therefore, we use n-variate 
B-spline wavelets and adjust them to the $!%subdivision scheme. 

B-spline wavelets have the property that they do not only influ- 
ence the neighbors of a vertex p. Therefore, lifting schemes with 
narrow filters for quadtree structures were introduced, see, for ex- 
ample, [Bertram et al. 20011. We review and generalize the lifting 
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scheme from [Bertram et al. 20011 in Section 3. In Sections 4 and 6, 
we develop a similar lifting scheme for the fi-subdivision scheme 
for n = 2 and n = 3, respectively. We show some results in Sections 
5 and 7, respectively. 

2 fi subdivision 

The splitting step of the fi-subdivision scheme goes back to 
[Maubach 19951, and was used more recently for subdivision 
surfaces, see, for example, [Velho and Zorin 20011. Velho and 
Zorin introduced an averaging step and showed that the produced 
surfaces are C4-continuous at regular and C’-continuous at extraor- 
dinary ,vertices. (For an introduction to subdivision methods, we 
refer to Warren and Weimer 20021.) 

We first describe the case n = 2. The two-dimensional scheme 
can be defined for triangular as well as quadrilateral meshes. 
Without loss of generality, we describe the quadrilateral case only. 

For a &-subdivision step of a quadrilateral Q, we compute the 
centroid c of Q, and connect c to all four vertices of Q by new 
edges. The former edges of the mesh are removed (except for the 
edges determining the outer mesh boundary). Figure 1 illustrates 
four &-subdivision steps. 

amBH 
Figure 1 : f i  subdivision. 

The mask used for the computation of the centroid c is given 
in Figure 2(a). Figure 2(b) shows the mask of the averaging step 
according to [Velho and Zorin 20011. A &-subdivision step is 
executed by first applying the mask in Figure 2(a), which inserts the 
new vertices, and then (after the topological mesh modifications) 
applying the mask in Figure 2(b), which repositions the old vertices. 

Figure 2: Masks of 4-subdivision step: (a) inserting centroid; (b) 
repositioning old vertices. 

When splitting every quadrilateral along one of its diagonal, we 
obtain a subdivision scheme for triangular meshes. The splitting 
step for triangular meshes is based on bisection of the longest edge. 
By using quadrilateral meshes the subdivision scheme is analogous 
to the fi-subdivision scheme of [Kobbelt 20001. Therefore, we 
call it 4 subdivision. 

We now generalize the subdivision scheme to fi subdivision for 
arbitrary dimension n. The splitting step is executed by inserting the 
centroid and adjusting the vertex connectivity. The averaging step 
applies to every old vertex v the update rule 

v =  a v + ( l -  a)w , 

where w is the centroid of the adjacent new vertices. 

We are especially interested in the case n = 3. Little research 
has been done to date concerning three-dimensional (volumetric) 
subdivision. One example is the work described in [MacCracken 
and Joy 19961. The literature currently provides no analysis of 
averaging steps for dimensions larger than two. Thus, at present, 
we cannot provide a solution for the choice of a in the update rule. 
Some investigations about applying the update rule in arbitrary 
dimensions were made by Pascucci in [Pascucci 20011. 

When applying the @-subdivision scheme to large volumetric 
data sets, we usually deal with more structured rectilinear grids, 
especially when considering imaging data sets, In this case, eight 
cuboids share a vertex, and the cuboids have the same size. For 
such “structured-rectilinear” grids, the update rule does not change 
the position of the vertices regardless of the specific a value. 

In Figure 3, three a-subdivision steps are shown. In each 
step, the centroids of the polyhedral shapes are inserted and the 
connectivity is adjusted. Three kinds of polyhedral shapes arise. 
They are shown in Figure 4. 

In the first step, each cuboid (first picture of Figure 3 or third 
picture of Figure 4, respectively) is subdivided by inserting the 
cuboid’s centroid and connecting the centroid to all old vertices 
(second picture of Figure 3). In the second step, each octahedron 
(first picture of Figure 4) is subdivided by inserting the octahe- 
dron’s centroid and connecting the centroid to all old vertices, 
while all old edges, except for the (red) edges inserted in the last 
subdivision step, are deleted (third picture of Figure 3). In the 
third step, each octahedron with split faces (second picture of 
Figure 4) is subdivided by inserting its centroid and connecting the 
centroid to all old vertices except for the (red) vertices inserted in 
the next-to-the-last subdivision step, while all old edges, except for 
the edges between the (red) vertices inserted in the next-to-the-last 
subdivision step and the (green) vertices inserted in the last step, 
are deleted (fourth picture of Figure 3). 

The three subdivision steps can also be described in the 
following way: The i‘irst step inserts the centroid of the cuboid, the 
second inserts the centers of the faces of the original cuboid, and 
the third inserts the midpoints of the edges of the original cuboid. 
Three fi-subdivision steps produce the same result as one octree 
refinement step. Hence, for multiresolution purposes, we obtain a 
much finer granularity through subdivision. We can thus get 
much closer to a required level of mesh-element size, and therefore 
we most likely will have to render less data to obtain a desired 
image / visualization quality. 

The @-subdivision step for a tetrahedral grid is again based on 
bisection of the longest edge. In [Zhou et al. 19971, a refinement 
scheme for tetrahedral grids is defined, which is analogous to the 
splitting step used in subdivision. Zhou et al. do not provide a 
full subdivision scheme, since the averaging step is missing. Thus, 
their scheme is restricted to structured-rectilinear grids. 

The a-subdivision scheme also applies to structured- 
curvilinear grids, where, in general, eight cubes share a common 
vertex. The scheme could even handle extraordinary vertices, but 
for the lifting scheme, which we introduce in this paper, we do not 
consider extraordinary vertices. It is our goal to apply the scheme 
to large data sets. Grids of arbitrary topology might be too time- 
consuming to process. 



Figure 3: f l  subdivision. 

Figure 4: Polyhedral shapes created by @ subdivision: octahedron, octahedron with split faces, and cuboid. 

3 The B-spline wavelet lifting scheme 

The main advantage of wavelet schemes is the fact that they 
provide a means to generate best approximations in a multireso- 
lution hierarchy. Stollnitz et al. in [Stollnitz et al. 19961 describe 
how to generate wavelets for subdivision schemes. However, 
$‘%subdivision wavelets can lead to over- and undershoots, which 
are especially disturbing when extracting isosurfaces from different 
levels of approximation. They can even cause topological changes 
of isosurfaces when changing the level of resolution. Therefore, we 
have decided to generate B-spline wavelets for the #%subdivision 
scheme. (For an introduction to B-spline techniques, we refer to 
[Prautzsch et al. 20021.) 

The computation of the B-spline wavelet coefficients at a certain 
vertex is not limited to using only adjacent vertices. In [Bertram 
et al. 20001, and more recently in [Bertram et al. 20011, a lifting 
scheme was developed. The described lifting scheme decomposes 
the computation into several steps, but narrow filters are asserted, 
i.e., only adjacent vertices are used. In [Bertram et al. 20001, 
Bertram et al. define the lifting scheme for the one-dimensional 
and two-dimensional cases using a quadtree organization of the 
vertices. 

We review and define masks for the one-dimensional lifting 
scheme of [Bertram et al. 20001 and generalize them to the two- 
and three-dimensional cases. In the following sections, we will 
adjust the two-dimensional lifting scheme to f i  subdivision and 
the three-dimensional lifting scheme to f i  subdivision. 

The one-dimensional B-spline wavelet lifting scheme makes use 
of two operations that are defined by the following two masks, 
called s-lift and w-lift: 

The s-lift mask is applied to the old vertices (black) and their new 
neighbors (blue), whereas the w-lift mask is applied to the new ver- 
tices (blue) and their neighbors (black), see Figure 5(a). For a de- 
tailed derivation of the lifting scheme that we use as a basis for this 
paper, we refer to [Bertram 20001. 

Lineam B-spline wavelets 
Using the s-lift and w-lift masks, a linear B-spline wavelet encod- 
ing step is defined by sequentially executing the two operations 

T-T 

Figure 5: Refinement step for one-, two-, and three-dimensional 
meshes. 

w-lift(-i, 1)  and 
s-lift( 4 , 1 )  . 

A linear B-spline wavelet decoding step is defined by sequentially 
executing the two operations 

s-lift(- 4 , l )  and 
w-lift(i,l) . 

Cubic B-spline wavelets 
Using the same masks, a cubic B-spline wavelet encoding step is 
defined by the lifting operations 

s-lift( - i, 2) , 
w-lift(-i, 1) and 
.+lift( i, 1 ) . 

A cubic B-spline wavelet decoding step is defined by the lifting 
operations 

s-lift(- i, I , 
w-lift( 4, 1)  and 
s-lift( 4, ) . 

When applying two-dimensional B-spline wavelets to a 
quadtree-organized set of vertices, two kinds of new vertices are 
obtained when executing a refinement step, namely the new ver- 
tices inserted at the midpoint of an old edge (blue) and the new ver- 
tices inserted at the center of an old face (green), see Figure 5(b). 
Therefore, we have two different masks. We derive the needed two- 
dimensional masks by convolution of the one-dimensional masks in 
the two coordinate directions. The results of this convolution step 



are the two-dimensional masks in 

s-lift(a, b)  : (; 2 

w-lift(a, 6 )  : (; ii 
(3) 

0- 011 (1- 

( ( r  6 ) and (4) 

( 5 )  

( a  / I  a ) .  (6) 

The one-dimensional masks defined by (4) and (6) are applied in 
both directions. The masks (3) and (4), as well as masks (5 )  and 
(6),  are applied simultaneously. 

When applying three-dimensional B-spline wavelets to an 
octree-organized set of vertices, three Lhds of new vertices are ob- 
tained when executing a refinement step, namely the new vertices 
inserted at the midpoint of an old edge (blue), the new vertices in- 
serted at the center of an old face (green), and the new vertices 
inserted at the centroid of an old cube (red), see Figure 5(c). There- 
fore, we have three different masks. For three-dimensional masks, 
we show the structure of the mask and separately define the val- 
ues for the black, blue, green, and red vertices, respectively. We 
derive the needed three-dimensional masks by convolution of the 
one-dimensional masks in all three coordinate directions. They are 
given by 

s-lift(a, b) : 

w-lift(a, b)  : 

b3 
06’ 
n 2 / I  

a3 

and 

4 A lifting scheme for &‘ subdivision 

Using f i  subdivision instead of a quadtree-based scheme, we 
only obtain new vertices at the centers of old faces (green) when 
executing a subdivision step; at the midpoints of old edges (blue) 
no vertices are inserted, see second picture in Figure 1 and compare 
to Figure 5(b). Thus, no data is available at the positions of the blue 
vertices, and we must adjust the two-dimensional masks (3) and ( 5 ) .  

First, we consider linear B-spline wavelets. For encoding in the 
linear case, the w-lift operation is executed first. Since we have 

no values at the blue positions required for mask (5), we linearly 
interpolate the values at the black vertices. This approach changes 
mask ( 5 )  to 

. (13) ) w-liftencode(a, b) : ( I)’ 
&+ab a2 +ab 

a2 +ab a2 +ab 

Next, the s-lift operation is executed. Again, we have entries at 
the blue positions in mask (3). However, the w-lift operation has 
(theoretically) executed mask (6) ,  and we have assumed that the 
values at the blue vertices are linear interpolations of the values at 
the black vertices; therefore, the values at the blue vertices have 
vanished. Mask (3) changes to 

s-liftencode(n, b)  : ( “1 b2 “1 ) . 
For decoding, we first execute the s-lift operation. Prior to 

executing the s-lift operation of the encoding, the values at the 
blue vertices have vanished, but the s-lift operation (theoretically) 
executed mask (4). Hence, the values at the blue vertices are now 
given by linear interpolation of the values at the green neighbor 
vertices multiplied by the factor 2a of mask (4). We rename the 
factor a to si and derive from mask (3) the new mask 

(14) 
n- (1- 

. (15) 

Finally, the w-lift operation is executed again. The s-lift decoding 
operation has (theoretically) applied mask (4). Since mask (4) ap- 
plied by the s-lift decoding operation is the inverse of mask (4) ap- 
plied by the s-lift encoding operation, the values at the blue vertices 
are the same as before the execution of these two s-lift operations, 
i. e., they vanish. These considerations define a new mask derived 
from mask (5),  given by 

) 
i l 3  t 2ntrl) i i ?  + 2iioh 

(73 + 2 m / ,  
b2 i ( I ?  c 2rrtrh 

s-liftdecode(a, b)  : 

w-liftdecode (a, b) : ( 1: h’ 1: ) . (16) 

The lifting operations for encoding and decoding do not have 
the same structure any longer, but, by substituting the a’s and b’s 
by new coefficients, the lifting operations could be transformed 
into a unique structure again. However, the masks are as narrow as 
they can be. 

We now consider cubic B-spline wavelets. Analogously to the 
linear case, we derive masks for the cubic case. The encoding starts 
with an s-lift operation, i. e., we use a modified form of mask (3). 
Assuming that the values at the blue vertices are given by linear 
interpolation of the ones at the black neighbor vertices, we obtain 
the mask 

s-liftencde, (a,  b)  : [ &  2 
(1- 

0 - 

& 
2 

b2 + 2ab 

- ab 
2 

* )  
Next, the w-lift operation is executed using mask (5). Since both 
the blue and black vertices have been similarly updated by the first 
s-lift operation, the values at the blue vertices can still be viewed 
as linearly interpolated values of the ones at the black neighbor 
vertices. This view however, is only an “approximation.” With 



this approximation, we are left with the same situation as the one 
before the start of the encoding in the linear case, which leads to 
the masks w-lifte,,,de(a, b): mask (13) and s-liftencode2(a,6): mask 
(14). 

Using the ideas of the linear case, we obtain for decoding the 
masks s-liftdecode, (a, b): mask (15) and w-liftdecode(u, b): mask 
(16). Before executing the w-lift decoding operation, the values at 
the blue vertices have vanished (as in the linear case). During the 
w-lift decoding operation, mask (6) is applied (theoretically); thus, 
the values at the blue vertices are now given by linear interpolation 
of the black neighbor vertices multiplied by the factor 2a of mask 
(6). We rename the factor a to H and derive from mask (3) the new 
mask 

8ab 
( I  - ( I  - 

s-liftdecodez(a, b) : ( 8nb 1 b2 + 48a6 : iinb 1 . 
(1 - ( I  - 

Tiab 

The lifting operations have lost even more of their unique 
structure. Some of the masks have also grown in size. 

5 2D Results 

In Figure 6, we provide an example for & subdivision and 
two-dimensional wavelets. The original surface shown in 6(a) and 
6(e) results from sampling a twodimensional Gaussian function 
at G2 vertices. The surface is encoded and decoded again. In 
6(b) and 6(Q, we show two different levels of detail obtained 
by &-subdivision wavelets. In 6(c) and 6(g), and in 6(d) and 
6(h), respectively, we show the same levels of detail obtained 
when combining B-spline wavelets and & subdivision in the way 
described in the previous section. In 6(c) and 6(g), we have used 
bilinear B-spline wavelets, whereas in 6(d) and 6(h) we have used 
bicubic B-spline wavelets. 

In 6(b), and especially in 6(f), the over- and undershoots caused 
by the &-subdivision wavelets can be recognized. In 6(d) and 
6(h), less pronounced over- and undershoots result, when combin- 
ing y 5  subdivision with cubic B-spline wavelets. No over- and 
undershoots emerge when combining & subdivision with linear 
B-spline wavelets, see 6(c) and 6(g). 

6 A lifting scheme for fi subdivision 

In this section, we generalize the ideas of Section 4 to the three- 
dimensional case. Since the masks for the cubic lifting scheme 
are not as narrow as the masks for the linear lifting scheme (see 
Section 4), and since the linear B-spline wavelets are more suitable 
for high approximation quality on every level of a multiresolution 
scheme (see Section 5) ,  we only consider the linear case. However, 
the ideas can be extended to the cubic case easily. 

Recalling the steps of a B-subdivision scheme depicted in 
Figure 3, after the execution of the different steps different kinds 
of polyhedral shapes arise, see Figure 4. Therefore, we have to 
distinguish between the different steps. The following description 
starts with the situation shown in the second picture of Figure 
3 (volume case), proceeds with the situation shown in the third 
picture Uace case), and finally treats the situation shown in the 
fourth picture (edge case), which is topologically equivalent to the 

situation shown in the first picture. 

The volume case 
To perform linear B-spline wavelet encoding in the situation shown 
in the second picture of Figure 3, we first execute a w-lift operation. 
Therefore, we apply three masks being similar to masks (lo), (1 l), 
and (la), subject to the constraint that no values are available at the 
blue and green vertices. 

Regarding the structures of masks (lo), we assume that the value 
at a blue vertex is defined by linear interpolation of the values at the 
two black vertices (with which the blue vertex shares an edge), and 
that the value at a green vertex is defined by bilinear interpolation 
of the values at the four black vertices (with which the green vertex 
shares a face). One obtains the mask 

The masks being analogous to masks (1 1) and (12) are only “ap- 
plied theoretically.” However, since the values at the blue vertices 
are assumed to be linear interpolations of the values at the black ver- 
tices, and since the values at the green vertices are assumed to be 
bilinear interpolations of the values at the black vertices, the values 
at both the blue and green vertices vanish. Therefore, the mask for 
the next s-lift operation, which is an analogue of mask (7), reduces 
to 

Again, the analogous versions of masks (8) and (9) are only applied 
theoretically. 

For the decoding step, we start with the s-lift operation, i. e., we 
adjust mask (7). Having (theoretically) applied masks (8) and (9) 
with vanishing values at the blue and green vertices, the values at 
the green vertices are linear interpolations of the values at the red 
neighbor vertices, multiplied by the factor 2a, and the values at 
the blue vertices are bilinear interpolations of the values at the red 
neighbor vertices, multiplied by the factor 4 2 .  By renaming the 
factor a to 8, we obtain the following mask 

Again, the analogous versions of masks (8) and (9) are only applied 
theoretically. Since masks (8) and (9) of this s-lift operation are 
the inverse masks of masks (8) and (9) of the encoding s-lift opera- 
tion, the blue and green vertices have their former values assigned 
again, i. e., the values vanish. Hence, the mask for the final w-lift 
operation, which is the mask being analogous to mask (lo), reduces 
to 



Figure 6: a-subdivision surfaces, (a) and (e), encoded and decoded by &-subdivision wavelets, (b) and (f), bilinear B-spline wavelets, (c) 
and (g), and bicubic B-spline wavelets, Id) and (h). 

In the three-dimensional case, the masks are also as narrow as 
they can be. 

The face case 
When applying linear B-spline wavelet encoding to the situation 
depicted in the third picture of Figure 3, we have to make sure 
that we do not violate the assumptions made for the volume 
case. We assume that the values at the green vertices are bilinear 
interpolations of the values at the black neighbor vertices. Thus, 

when the values at the green vertices are available, their values 
should be computed only from the values at the black vertices. 
This insight leaves us with the two-dimensional case, and we can 
apply masks (13) - (16) of Section 4. 

The edge case 
When applying linear B-spline wavelet encoding to the situation 
illustrated in the fourth picture of Figure 3, we must not violate 
the assumption that the values at the blue vertices are linear 
interpolations of the values at the black neighbor vertices. When 
the values at the blue vertices are available, their values should be 
computed only from the values at the black vertices. This insight 
leaves us with the one-dimensional case, and we can apply masks 
(1)  and (2) of Section 3. 

It is a significant advantage of our scheme that the face and 
edge cases cover naturally boundary faces and boundary edges, 



respectively. 

7 30 Results 

In Figure 7, we compare the results obtained by application 
of a @-subdivision multiresolution scheme, with and without 
trilinear B-spline wavelet encoding. The data set is a 2563 uniform 
rectilinear grid, and at every vertex one scalar value between 0 
and 255 is given. The data set represents a “bonsai tree solid.” It 
was obtained by computer tomography. For the visualization of 
the bonsai tree, we extract and render the isosurface corresponding 
to the value 80, which is generated by the marching-tetrahedra 
algorithm described in [Gukziec and Hummel 19951. 

Figures 7 (a) and (b) show the isosurface extracted from two 
different levels of detail of a @-subdivision hierarchy without 
using wavelets. Figures 7 (c) and (d) show the same isosurface 
extracted from the same levels of detail, where a @-subdivision 
hierarchy is combined with the trilinear B-spline wavelet scheme 
described in the previous section. Without the averaging steps of 
a wavelet encoding on the coarse level shown in 7(a), we seem 
to have three unconnected isosurface components for the chosen 
isovalue. When using the wavelets, we already have the correct 
topological information, which is shown in 7(c). Considering the 
finer levels shown in 7 (b) and (d), the resolution is not yet high 
enough to represent the finest details, like branches and twigs, but it 
is evident that the wavelet approach leads to better approximations. 

To quantify the improvement in approximation quality, we com- 
pute an approximation error for each coarser level of approxima- 
tion by comparing it to the original, highest resolution level. Given 
the original function F discretely by sample values at locations q, 
i E [ 1 n,] [ 1, ny] [ l,nz], we define the root-mean-square error as 

where f(3) is the approximated function value by trilinear 
interpolation applied to a “cell” in the coarser level of resolution: 
I f f  is defined at “comer” locations yj = and if 5 

proximated function value f (  ) results from trilinear interpolation 
of the eight comer values f (y3, .  . . , f ( ~ ~ + ~ ) .  

In Table 1, we list the root-mean-square errors of the shown 
examples at various levels of resolution. We scale the root-mean- 
square error to the interval [0,1]. We define the “downsampling 
ratio” as the original number of vertices divided by the number of 
vertices at the used coarser resolution. For all examples and all 
resolutions, we obtain smaller root-mean-square errors when using 
trilinear B-spline wavelets. 

is inside the interval [Yjsx’Yj+e,s)lYj,y,~j+e?,y)LYj,z‘~j+e~,~), the ap- 

In Figure 8, we show a biomedical example. The data set 
represents a human brain. It is stored in 753 slices, and each slice 
has a resolution of 1050 x 970 points, where 24-bit RGB-color 
information is stored. The original data set was preprocessed with 
a segmentation algorithm described in frakanashi et al. 20021 to 
eliminate noise and irrelevant data. We apply the wavelet scheme 
to each color channel independently and, after conversion, use the 
value V of the HSV color model for isosurface extraction. 

Figure 8 shows an isosurface for the value 78 extracted from 
the level of detail with downsampling ratio 29. For Figure 8(a), 

we use a @-subdivision hierarchy without using wavelets, and, 
for Figure 8(b), we combine the @-subdivision hierarchy with 
trilinear B-spline wavelets. Figure 8(b) contains much more detail 
information than Figure 8(a). 

In Figure 9, we apply our techniques to numerically simulated 
hydrodynamics data. The data set results from a threedimensional 
simulation of the Richtmyer-Meshkov instability and turbulent 
mixing in a shock tube experiment, see [?I. For each vertex of a 
10243 structured-rectilinear grid (one time step considered only), 
a value between 0 and 255 for the entropy is stored. We show the 
isosurface corresponding to the value 225 extracted from three 
different levels of resolution of one time step. Again, we compare 
the results of the @-subdivision hierarchy without (left column) 
and with (right column) trilinear B-spline wavelets. 

Considering the example shown in Figure 9, when using the 
wavelet approach low-resolution visualizations suffice to under- 
stand where the turbulent mixing takes place. For example, Figure 
9(d) shows clearly the big “bubble” rising in the middle of data set. 
The bubble can hardly be seen in Figure 9(a). 

8 Conclusions and future work 

We have introduced .;/z subdivision combined with n-variate 
B-spline wavelets for n-dimensional multiresolution data represen- 
tation. Since visualization of, for example, biomedical imaging 
data and numerically simulated hydrodynamics data require 
efficient extraction of many isosurfaces, a three-dimensional 
multiresolution framework is desirable. We first have established 
a bivariate B-spline wavelet scheme for f i  subdivision and then 
have generalized it to a trivariate B-spline wavelet scheme for a 
subdivision. We have provided examples documenting the value 
of our approach for surface and volume modeling and visualization. 

By using .;/z subdivision, instead of using quad- or octrees, a 
multiresolution hierarchy can be generated that provides much 
more levels of detail, since, in each subdivision step, the number 
of vertices is only doubled instead of multiplied by a factor of 
four or eight, respectively. In the context of view-dependent and 
adaptive refinement and visualization, this characteristic supports 
a higher level of adaptivity. Furthermore, ;/z subdivision does not 
only work for structured-rectilinear grids, but also for more general 
structured-curvilinear grids, and even for arbitrary grids, i. e., grids 
with extraordinary vertices. 

By integrating a wavelet scheme into the subdivision approach, 
we obtain, in general, much better approximations on each level 
of detail. We have chosen n-variate B-spline wavelets and have 
developed lifting schemes for n = 2 and n = 3, which use narrow 
masks. These narrow masks allow us to apply the wavelet scheme 
for view-dependent, adaptive multiresolution visualization. 

It is a well-known fact that wavelet encoding only “reorganizes” 
data and does not require additional memory. The a-subdivision 
scheme also does not require us to store additional connectivity 
information. Thus, our approach, as a whole, requires no additional 
storage. 

Since the masks of our lifting scheme are of constant size and 
the number of iterations for our lifting scheme is constant, our 
algorithms run in linear time with respect to the number of original 
data. Since the masks are narrow and only two iterations are 
needed (in the linear case), the run-time constants are small. 
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Figure 7: Comparing . --subdivision 1 yI1 "..- I ly .ae same 
isosuface extracted from the levels of detail with downsampling ratios 1 and Zi5.  (Data set courtesy of S. Roettger, Abteilung Visualisierung 
und Interaktive Systeme, University of Stuttgart, Germany) 

... hout, (a) and (b), and with, (c) I.-_ (d), trilii-..... I "~.~.'- 

Considering the provided examples, we conclude that our ap- 
proach provides a valuable tool for the interactive exploration of 
volumetric data at multiple level of resolution. 
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Figure 9: Entropy in a threedimensional simulation of the Richtmyer-Meshkov instability, visualized by isosurface extraction from a B- 
subdivision hierarchy without (left column) and with (right column) B-spline wavelets at the resolutions with downsampling ratios 2, 212, 
and 215. 


